

Microservices in Go
Matthew Campbell

Microservices in Go
Matthew Campbell

iv

Table of Contents
 ... vi
1. Performance ... 1

1.1. Metrics .. 1
1.2. Why Metrics are important .. 1
1.3. Tools of the trade ... 1
1.4. Never get slower .. 1
1.5. net.Context .. 2
1.6. InfluxDB ... 2

1.6.1. Install InfluxDB ... 2
1.7. Metrics in Go ... 3
1.8. Using Grafana with InfluxDB .. 5

1.8.1. Install Grafana ... 5
1.9. Monitor ... 6
1.10. Stacking Metrics ... 13
1.11. Distributed Tracing with ZipKin .. 13

1.11.1. ZipKin .. 14
1.11.2. Setting up a ZipKin server .. 15
1.11.3. Tracing a Go program. .. 16
1.11.4. Tracing across services. ... 19

1.12. Role of Caches, Queues and Databases ... 21
1.12.1. Overview of why they are important .. 21
1.12.2. Delay everything Queues .. 21

1.13. Go Profiling .. 21
1.14. Load tests .. 21

1.14.1. Boom .. 22
1.14.2. Vegeta .. 23
1.14.3. Load test with Jenkins and jMeter Report .. 24

1.15. General coding tips ... 29
1.15.1. Garbage collection pointers ... 29
1.15.2. Concatenation string performance ... 33

v

List of Figures
1.1. An example trace diagram. .. 14
1.2. Finding traces on ZipKin web UI. ... 18
1.3. Span inspection ... 19
1.4. Trace spanning more than one services ... 21

vi

1

Chapter 1. Performance
Now adays having a fast service is not optional, its a requirement from day one. Slow apps will lose
customers. Mobile apps tend to be on slow connections, its important monitoring performance and
bundling calls together to optimize this. Sometimes its not your code thats slow, but the infastructure,
dns, or even the location of your datacenter. We will go into how we monitor both inside and outside
your infastructure to get the best peformance. We will dig into how we can use InfluxDB and Grafana
to monitor them.

1.1. Metrics
Runtime metrics are the corner of all performance monitoring. If you want to see an amazing intro to
the topic watch CodeHale’s talk on metrics (here [https://www.youtube.com/watch?v=czes-oa0yik)].
Basically the idea is as your application runs in a production environment you are keeping counters
and timers of everything that is happening. So you can pinpoint sql performance issues on node #6 of
your cluster.

1.2. Why Metrics are important
In the past most performance testing was done with weeks of load tests before we put a application in
production. Then we would proceed to have nearly any statistics on how the app performed for actual
users, you know the ones we actually care about. These days most people have runtime metrics inside
their applications. Sometimes as granular as per user or per http transaction.

1.3. Tools of the trade
Talk about Graphite, Statsd, Influxdb and Grafana, Prometheus. A quick overview of the choices for
metrics. Graphite and Statsd are probably the oldest and most stable solutions for graphing, infact they
are great and I’ve been using them for the last three years. There has been so much writing on them,
I wanted to showcase some of the newer tools. Also I want to show some stacked metrics which are
difficult to achieve in Graphite, but fit nicely into InfluxDb/Prometheus. For the sake of brevity we are
going to be using InfluxDb as our backend stats system, with a Grafana frontend. This book continues
to make opinioated choices on tools, to not overload the user. The concepts can be applied to any tool,
however we like to have one concrete example.

1.4. Never get slower
Number 1 rule of performance, is to never get slower. Thats why you need to do monitoring at three
different stages.

1. performance unit tests on the local dev workstation.

2. Automated load tests on jenkins

3. Application level metrics in production running instances of our applications.

https://www.youtube.com/watch?v=czes-oa0yik
https://www.youtube.com/watch?v=czes-oa0yik

Performance

2

1.5. net.Context
Net context is a really cool way to pass data throughout pieces of your code, similiar to thread local
storage. Except its extremely explicit. There is a great intro to it https://blog.golang.org/context. We
are going to use Context for two things in this book, structured logging and performance tracking. We
can do cool things like tabulate the mysql performance for a full http request, then we can even go one
step further and track it across multiple servers.

package main

import (
 "fmt"
 "net/http"
 "time"

 "golang.org/x/net/context"
)

func contextHandler(w http.ResponseWriter, req *http.Request) {
 var timeInMilliseconds time.Duration = 0
 ctx := context.WithValue(context.Background(), "time", &timeInMilliseconds)

 longTimeSqlFunc(ctx)
 longTimeSqlFunc(ctx)
 longTimeSqlFunc(ctx)

 val := ctx.Value("time").(*time.Duration)
 s := fmt.Sprintf("Took in expensive functions(%f)\n", val.Seconds()/1000)
 w.Write([]byte(s))
}

func longTimeSqlFunc(ctx context.Context) {
 defer func(s time.Time) {
 val := ctx.Value("time").(*time.Duration)
 *val = *val + time.Since(s)
 }(time.Now())

 time.Sleep(time.Second)
}

func main() {
 http.HandleFunc("/", contextHandler)
 http.ListenAndServe(":8080", nil)
}

1.6. InfluxDB
InfluxDb is a json timeseries database. Disclosure: I was a previous founder of the company Errplane,
which spun out into this. I never directly worked on influx, however have watched it from a distance
and I am very impressed. We are going to use that as the backend for all of our samples.

1.6.1. Install InfluxDB
We using docker help us install.

https://blog.golang.org/context

Performance

3

docker run --name influxdb -d -p 8083:8083 -p 8086:8086 -e PRE_CREATE_DB="metric" tutum/influxdb

InfluxDB use port 8083 for web-ui and we can access the database with port 8086. PRE_CREATE_DB
will create database after running success.

1.7. Metrics in Go
In GO we are going to use the metrics library go-metrics, inspired by the original CodeHale Metrics
library in scale. Its really easy to setup

In this example we will create web application. The collect number of request and response time to
InfluxDB.

import (
 "github.com/GeertJohan/go-metrics/influxdb"
 "github.com/rcrowley/go-metrics"
 "net/http"
 "time"
)

func MetricToInfluxDB(d time.Duration) {
 go influxdb.Influxdb(metrics.DefaultRegistry, d, &influxdb.Config{
 Host: "192.168.99.100:8086",
 Database: "example",
 Username: "root",
 Password: "root",
 })
}

func IndexHandler(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusOK)
 w.Write([]byte("Hello world"))
}

func main() {
 MetricToInfluxDB(time.Second * 1)

 http.HandleFunc("/", IndexHandler)

 http.ListenAndServe(":3000", nil)
}

In MetricToInfluxDB(), we create goroutine for monitor metric and save them into influxdb every d
duration. We set durtation in main() to 1 second, IndexHandler() is a http handler for display Hello
world in http://localohst:3000.

Next we will add a counter, when we go to http://localhost:3000, it will increase 1.

Performance

4

...

var requestCounter metrics.Counter

...

func IndexHandler(w http.ResponseWriter, r *http.Request) {
 requestCounter.Inc(1)

 w.WriteHeader(http.StatusOK)
 w.Write([]byte("Hello world"))
}

...

func main() {
 requestCounter = metrics.NewCounter()
 metrics.Register("count_request", requestCounter)

 MetricToInfluxDB(time.Second * 1)

 http.HandleFunc("/", IndexHandler)

 http.ListenAndServe(":3000", nil)
}

We created requestCounter with metrics.NewCounter() and register to the metric name
count_request. So we can see this counter in InfluxDB with column count_request. On
IndexHandler() we added requestCounter.Inc(1) to increase counter by 1.

...

var responseTime metrics.Timer

...

func IndexHandler(w http.ResponseWriter, r *http.Request) {
 requestCounter.Inc(1)
 startReqTime := time.Now()
 defer responseTime.Update(time.Since(startReqTime))

 w.WriteHeader(http.StatusOK)
 w.Write([]byte("Hello world"))
}

func main() {
 requestCounter = metrics.NewCounter()
 metrics.Register("count_request", requestCounter)

 responseTime = metrics.NewTimer()
 metrics.Register("response_time", responseTime)

 MetricToInfluxDB(time.Second * 1)

 http.HandleFunc("/", IndexHandler)

 http.ListenAndServe(":3000", nil)
}

Performance

5

Next we will add response-time timer. In above code, we created a new timer call responseTime and
register to the metric name response_time. On IndexHandler, we created startReqTime and defer
responseTime.Update(time.Since(startReqTime)) to make a response-time.

Now we finished in go code, you can run http://localhost:3000 many times to make the data and
send to the InfluxDB. After that we will go to InfluxDB web-ui. Assume that you run InfluxDB in
your local machine, go http://localhost:8083. You will see the login page. The default InfluxDB
docker will create a root account, Fill following information into this page and login.

• Username: root

• Password: root

• Port: 8086

After login, Select metric database which we created on docker run. You will go to the query page.

To see all column in our database you can run this query list series This query will show all of
series in your database. You can bring the series to use on the grafana.

1.8. Using Grafana with InfluxDB
Grafana is the tool we are going to use for all the charts. As we go through the sections i’ll show you
also how to visualize step by step.

1.8.1. Install Grafana
We already created Grafana docker image which working with InfluxDB.

Performance

6

docker run --name grafana -d --link influxdb:influxdb \
-e INFLUXDB_HOST=influxdb \
-e INFLUXDB_PORT=8086 \
-e INFLUXDB_NAME=metric \
-e INFLUXDB_USER=root \
-e INFLUXDB_PASS=root \
-p 3300:80 \
hyperworks/grafana

The above command is create grafana container and link it to influxdb. So this container can access
the influxdb container. The environment variables that we set are influxdb information for create
datasource in grafana.

Go to url http://localhost:3300, you will see the login page. Use username admin and password
admin to login. This is the default account which come with docker image.

1.9. Monitor
After we login to Grafana, we will add graphs for counter request and response-time that we created
go application before. The first page the you will see after login is Dashboard page

Performance

7

Click Home button on the top, then click New (this will create a new dashboard)

Now you are in side the new dashboard, on the left side you will see a small brown ractangle

Performance

8

Click that rectangle and Select Add Panel → Graph

When you created, don’t forget save the dashboard (disk icon on the top menu). Click Home button on
the top, then click New (this will create a new dashboard)

Performance

9

Now you are in side the new dashboard, on the left side you will see a small brown ractangle

Click that rectangle and Select Add Panel → Graph When you created, don’t forget save the
dashboard (disk icon on the top menu)

Performance

10

On middle top of graph, click no title (click here) then click edit for edit graph

On Metrics tab, you will see the series this series come from datasource. (you can see influxdb series
by query list series in influxdb query page) Input response_time.timer series then you can
select fields of series to display on graph. This example input response_time.timer series and select
mean of mean group time 30s

Performance

11

You can change the title of this graph by go to General tab and change it in title input form

Let’s change unit on Y-Axis, click on Axes & Grid tab then click short on Left Y row choose duration

→ nanoseconds (ns) Then click save dashboard on the top menu (disk icon on the top menu)

Performance

12

Next we will add counter of request into this dashboard Click that rectangle and Select Add Panel →
Single stat

Again click the top middle of single state no title (click here) then click edit Now we are inside
of single sate, This state we will add request counter. The series is count_request.count select last
of count

Performance

13

Then click save dashboard on the top menu (disk icon on the top menu) Result

1.10. Stacking Metrics

1.11. Distributed Tracing with ZipKin
In this section, we will take a look at distributed tracing. Usually tracing a single program allows us to
see how an action performed on it translates into calls to each components of the system and how long
those calls take. But with microservices architecture, your program may only constitute a single part
of a complex system and an action performed at one end may translate into many service calls across
multiple machines.

Let’s first look at how we might manually trace a simple Go program:

A simple Go program.

Performance

14

package main

import (
 "fmt"
 "time"
)

func main() {
 fmt.Println(outer())
}

func outer() int {
 time.Sleep(1 * time.Second)
 return inner1() + inner2()
}

func inner1() int {
 time.Sleep(1 * time.Second)
 return 1
}

func inner2() int {
 time.Sleep(1 * time.Second)
 return 1
}

From the program we can deduce that running the main() function will result in a call to the outer()
function, taking at least 1 second and that the function itself also calls the two other functions, namely
inner1() and inner2() each taking at least a second.

A trace diagram from the above program might looks like this:

Figure 1.1. An example trace diagram.

From the diagram we can see the breakdown of the calls in visual form. Having a diagram like this
allows us to quickly and easily identify the bottleneck in the system during optimization as well as
quickly identify any potential problems.

1.11.1. ZipKin
ZipKin (http://twitter.github.io/zipkin/) is a distributed tracing system designed specifically for this
scenario and is itself a tracing server that accepts trace "Spans" sent from multiple locations. Let’s
first take a look at how a ZipKin span looks like.

http://twitter.github.io/zipkin/

Performance

15

Sample ZipKin span in JSON format.

{
 "trace_id": 3871090523923428400, //
 "name": "main.firstCall", //
 "id": 3871090523923428400, //
 "parent_id": null,
 "annotations": [//
 {
 "timestamp": 1433850777559706,
 "value": "cs", //
 "host": {
 "ipv4": 0,
 "port": 8080,
 "service_name": "go-zipkin-testclient"
 },
 "duration": null
 },
 {
 "timestamp": 1433850777564406,
 "value": "cr",
 "host": {
 "ipv4": 0,
 "port": 8080,
 "service_name": "go-zipkin-testclient"
 },
 "duration": null
 }
],
 "binary_annotations": [],
 "debug": true
}

Since ZipKin is designed for distributed tracing, we may have data coming from different
soures, the traceId here is an identifier that will helps us identify Spans that originate from the
same action so we can group them together and analyze the parts.
ZipKin spans also have a name which is usually the qualified name of the method under trace or
the name of the network operation being performed.
Each individual ZipKin spans also have its own id and a parent_id. These two values help
identify the relationship between different ZipKin spans. For example, a trace coming from the
main() function in our initial example could be a parent to a span identifying the outer() call
and likewise the trace span from outer() would have 2 children being the traces from inner1()
and inner2() call.
ZipKin spans usually also contains two annotations with it, the timestamps at the start of the
operation and another at the end so we can use this value to deduce the time the service took.
For a client-side operation, the pair of values are named "cs" which stands for "client send" and
"cr" which stands for "client receive". On the server-side the pair of values are named "sr" and
"ss" instead referring to "server receive" and "server send" respectively.

1.11.2. Setting up a ZipKin server
Running Zipkin, we have set up following Zipkin services.

• Scribe Collector service for communicate with client to send data

• Web ui service for query our span and see in graphic

Performance

16

• Query service for web ui can query data in different data store

• Cassandra data store for collect data from Scribe Collector

This is quite a lot for setup for testing and development. The easiest way we setup is combine them
into one docker container and run it with one docker run. Another solution is docker-zipkin [https://
github.com/itszero/docker-zipkin], packed all services with shell script.

Before install please ensure that your machine have 8 gigabit ram or more. First we have to clone
docker-zipkin repository into your machine

$ git clone git@github.com:itszero/docker-zipkin.git

In deploy folder you will see 2 shell scripts.

1. build.sh run docker build zipkin services

2. deploy.sh run docker run zipkin services

Run build.sh for build docker images. You have to wait for a while for complete this.

$./deploy/build.sh

After we finished building docker image. Let’s check the result in docker images command, the
result will look like this.

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
itszero/zipkin-cassandra latest fe45e32f270c 2 minutes ago 467 MB
itszero/zipkin-collector latest 0444124a7ede 2 minutes ago 936.2 MB
itszero/zipkin-web latest a8aed6955ab0 2 minutes ago 936.2 MB
itszero/zipkin-query latest f106fbe382ba 2 minutes ago 936.2 MB
itszero/zipkin-base latest 3302a4ac3c59 2 minutes ago 936.2 MB

Right now we got all zipkin services images. Let’s run all of them with deploy.sh Before run deploy
we have config a bit inside deploy.sh. In line 5 of deploy.sh you will see the ROOT_URL config.
Change it to your url or ip address for access zipkin web ui. in this example will change it to ip
127.0.0.1. You change port with PUBLIC_PORT default is 8080.

PUBLIC_PORT="8080"
ROOT_URL="http://127.0.0.1:$PUBLIC_PORT"

Save and run deploy.sh. You will see all services run at the same time.

$ deploy.sh

Let’s check all services is runing correctly by docker ps.

$ docker ps

1.11.3. Tracing a Go program.
Now that we have ZipKin setup, let’s send some tracing data to it. For this we will use the
spacemonkeygo/monitor library on GitHub. Let’s add some imports to our simple program first:

https://github.com/itszero/docker-zipkin
https://github.com/itszero/docker-zipkin
https://github.com/itszero/docker-zipkin

Performance

17

import (
 "fmt"
 "time"

 "golang.org/x/net/context" //
 "gopkg.in/spacemonkeygo/monitor.v1" //
 "gopkg.in/spacemonkeygo/monitor.v1/trace/gen-go/zipkin" //
)

The library makes use of the experiemental HTTP context package golang.org/x/net/
context for sharing values between multiple middlewares and misc HTTP calls.
This is the library itself, imported via gokg.in service so we have version locking while the
master branch on GitHub changes.
We will need to supply some ZipKin-specific configuration as well so we need to import this
generated code package.

Now that we have all the components imported, let’s initialize the tracing library:

trace.Configure(1, true, &zipkin.Endpoint{
 Ipv4: 127*0x01000000 + 1,
 Port: 8080,
 ServiceName: "go-zipkin-testclient",
})

if c, e := trace.NewScribeCollector("0.0.0.0:9410"); e != nil {
 panic(e)
} else {
 trace.RegisterTraceCollector(c)
}

The Configure() calls setup the tracing library with information about our current machine
and running program. This line specifies the IP address of the service with an integer value that
represents the address 127.0.0.1
The trace library delivers ZipKin spans embedded inside Twitter’s Scribe logging protocol so we
are creating a new spans collector here that can talk the Scribe protocol and which will sends it
to our ZipKin server running at address 0.0.0.0 on port 9410. The RegisterTraceCollector()
call registers the collector as our default collector for all subsequent trace.Trace() calls.

And then for each call, we can now call the trace.Trace() method to logs the times taken during
each call. The function returns another function for us to invoke at the end of the tracing method.
This method also requires that we pass in a context.Context. Methods constituting the same chain
of operation should also share the same context instasnce. For the very first call we can use the
context.Background() method to obtain a new, empty context.

Let’s try adding tracing code for the first method call now:

func outer() int {
 ctx := context.Background()
 done := trace.Trace(ctx)

 time.Sleep(1 * time.Second)
 result := inner1() + inner2()

 done(nil)
 return result
}

Performance

18

Note that the done() function returned from the initial trace.Trace() call above also lets us pass
in a pointer to an error variable as well. We can pass in a pointer to our error return value variable
should we have one and if the method panic() for any reason, the tracing call will pick it up and sets
the error return value for us.

This pattern however, can be more briefly achieved in Go using the defer keyword.

func outer() int {
 ctx := context.Background()
 defer trace.Trace(&ctx)(nil)

 time.Sleep(1 * time.Second)
 return inner1() + inner2()
}

Likewise for the inner1() and inner2() methods we can call the trace.Trace() method to begin
the trace and invoke the result with defer to wrap up the call. We will also need to modify the method
so that we can pass the context.Context instance through as well.

// return inner1(ctx) + inner2(ctx)

func inner1(ctx context.Context) int {
 defer trace.Trace(&ctx)(nil)
 time.Sleep(1 * time.Second)
 return 1
}

func inner2(ctx context.Context) int {
 defer trace.Trace(&ctx)(nil)
 time.Sleep(1 * time.Second)
 return 1
}

Try running the program a few times to generate some spans. Using the ZipKin web UI you can
browse and see the span data being sent to ZipKin as well as visualize the call tree.

From the web UI, use the service drop-down box to select the service we have named in our code.
Clicking on "Find Traces" should produce a list of recent traces being sent to the server.

Figure 1.2. Finding traces on ZipKin web UI.

Performance

19

You can see the call trace graph similar to what we’ve drawn ourselves earlier from the UI. You can
also click on each individual call to see further breakdown and details about the calls:

Figure 1.3. Span inspection

1.11.4. Tracing across services.

To provide a complete tracing picture across services there needs to be a way for each of the services
to communicate and share the current tracing session. If all your services talk over HTTP, the tracing
library we have used earlier already provides this.

Let’s look at how to make a simple HTTP service with tracing using the spacemonkeygo/monitor
library. First let’s make a simple HTTP route:

A simple Go HTTP service.

Performance

20

package main

import (
 "net/http"
)

func HelloHandler(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusOK)
 w.Write([]byte("Hello world #2"))
}

func main() {
 http.ListenAndServe(":3002", http.HandlerFunc(HelloHandler))
}

To be able to receive the trace session from another service, we will need to wrap this handler inside a
trace.TraceHandler and to be able to pass along a context.Context from the client, we’ll need to
also wrap that in trace.ContextWrapper as well. Our HTTP Handler will also now needs to accepts
a context.Context that is coming from the previous trace(s), if any.

Tracing added to the HTTP server.

// import "golang.org/x/net/context"
// import "gopkg.in/spacemonkeygo/monitor.v1/trace"
// import "gopkg.in/spacemonkeygo/monitor.v1/trace/gen-go/zipkin"

func HelloHandler(ctx context.Context, w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusOK)
 w.Write([]byte("Hello world #2"))
}

func main() {
 handler := trace.ContextWrapper(trace.TraceHandler(
 trace.ContextHTTPHandlerFunc(HelloHandler)))
 http.ListenAndServe(":3002", handler)
}

Just like normal Go programs, we will also need to Configure() the trace so that it knows where
to send the data just like we did previously. We will omit the code here since it is basically the same
code with a different service name.

Now our server will now be able to trace itself as well as add spans to any existing traces being passed
over from other services. The context.Context instance that was passed to our HTTP server can also
be used in further tracing as well. For example, we can adds a mock SQL call and add a step to the
trace as well:

func HelloHandler(ctx context.Context, w http.ResponseWriter, r *http.Request) {
 RandomSQLCall(ctx)
 w.WriteHeader(http.StatusOK)
 w.Write([]byte("Hello world #2"))
}

func RandomSQLCall(ctx context.Context) {
 defer trace.Trace(&ctx)(nil)
 time.Sleep(time.Duration(rand.Int()%10000) * time.Microsecond)
}

Performance

21

If you have more methods that you think you will need tracing information from, simply pass along
the context.Context instance to each method and call defer trace.Trace()() on it.

Below is an example of a trace on the web UI that goes from a hello1 service to hello2 over a
network call and then to the RandomSQLCall() method:

Figure 1.4. Trace spanning more than one services

As you can see, with ZipKin you con trace your architecture from end-to-end in one place without
having to correlate data from disparate services yourself.

1.12. Role of Caches, Queues and
Databases

We are just giving a brief overview here as each one has a special chapter.

1.12.1. Overview of why they are important

1.12.2. Delay everything Queues

1.13. Go Profiling
Go already comes with profiling tools. The best place for learning pprof tool is http://blog.golang.org/
profiling-go-programs

1.14. Load tests
We do load tests for checking the performance in our system, and how many we can handle
incomming request. There are many tools can help you do load test and show a report. In this section
we will pick load tests tools which written in Go.

This is a example code for running load test, It’s just Hello world application.

http://blog.golang.org/profiling-go-programs
http://blog.golang.org/profiling-go-programs

Performance

22

package main

import (
 "net/http"
)

func IndexHandler(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusOK)
 w.Write([]byte("Hello world"))
}

func main() {
 http.HandleFunc("/", IndexHandler)

 http.ListenAndServe(":3000", nil)
}

1.14.1. Boom

Boom is similar to Apache bench (ab) tool but written in go.

We can install Boom with go get

go get github.com/rakyll/boom

This is an example command we will run on http://localhost:3000

boom -n 1000 -c 50 -m GET http://localhost:3000

This command run 1000 requests and 50 concurrents per second. The result will be like this.

Performance

23

Summary:
 Total: 1.1616 secs.
 Slowest: 1.0122 secs.
 Fastest: 0.0015 secs.
 Average: 0.0108 secs.
 Requests/sec: 860.8770
 Total Data Received: 11000 bytes.
 Response Size per Request: 11 bytes.

Status code distribution:
 [200] 1000 responses

Response time histogram:
 0.002 [1] |
 0.103 [995] |##
 0.204 [0] |
 0.305 [0] |
 0.406 [1] |
 0.507 [0] |
 0.608 [0] |
 0.709 [0] |
 0.810 [0] |
 0.911 [0] |
 1.012 [3] |

Latency distribution:
 10% in 0.0054 secs.
 25% in 0.0063 secs.
 50% in 0.0072 secs.
 75% in 0.0082 secs.
 90% in 0.0101 secs.
 95% in 0.0108 secs.
 99% in 0.0128 secs.

The report in Boom look easily and nice histogram. You can see the how many response http status
code.

1.14.2. Vegeta

Vegeta is another one written in Go. Support multiple target and config file.

We can install Vegeta with go get

go get github.com/tsenart/vegeta
go install github.com/tsenart/vegeta

Here is our load test command

echo "GET http://localhost:3000" | vegeta attack | vegeta report

We pipe string url and send to vegeta attack, after attacked we using vegeta report to display the
result. And this is the example result.

Performance

24

Requests [total] 500
Duration [total, attack, wait] 9.981421067s, 9.980964392s, 456.675µs
Latencies [mean, 50, 95, 99, max] 532.152µs, 401.337µs, 1.042179ms, 34.251801ms, 34.251801ms
Bytes In [total, mean] 5500, 11.00
Bytes Out [total, mean] 0, 0.00
Success [ratio] 100.00%
Status Codes [code:count] 200:500
Error Set:

If you want the report in another format like json or graph (Dygraphs [http://dygraphs.com]). you just
add -reporter flag and -output flag

echo "GET http://localhost:3000" | vegeta attack | vegeta report -reporter json -output result.json

echo "GET http://localhost:3000" | vegeta attack | vegeta report -reporter plot -output result.html

This is the example command that report in json format and output to result.json Another example
is reporter in graph the the result is html format.

Open graph result, you will see graph like this.

1.14.3. Load test with Jenkins and jMeter Report
I this section we will talk about how to make an automate load test in Jenkins and show the result with
jMeter Report. Jenkins has plugin (Performance Plugin [https://wiki.jenkins-ci.org/display/JENKINS/
Performance+Plugin]) which read and display jMeter report. This example will use vegeta tool for
load test and convert it to jMeter result format for display report in Jenkins. The goal of this scenario
for auto detect performance failure.

Let’s try

Install vegeta tool into Jenkins machine and make it can run inside Jenkins project

http://dygraphs.com
http://dygraphs.com
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin

Performance

25

go get github.com/tsenart/vegeta
go install github.com/tsenart/vegeta
mv $GOPATH/bin/vegeta /usr/local/bin/vegeta

Make a tool for convert vegeta to jMeter. This is an example to convert

Performance

26

package main

import (
 "bufio"
 "bytes"
 "encoding/json"
 "encoding/xml"
 "flag"
 "io/ioutil"
 "os"
 "path/filepath"
 "strings"
 "time"
)

type TestResults struct {
 XMLName xml.Name `xml:"testResults"`
 Version string `xml:"version,attr"`
 Samples []Sample `xml:"httpSample"`
}

type Sample struct {
 Label string `xml:"lb,attr"`
 TimeStamp int64 `xml:"ts,attr"`
 Success bool `xml:"s,attr"`
 Elapsed int64 `xml:"t,attr"`
 ResponseCode int `xml:"rc,attr"`
}

type VegetaResult struct {
 Code int `json:"code"`
 Timestamp time.Time `json:"timestamp"`
 Latency int64 `json:"latency"`
}

func WriteJMeter(filename string, vegetaResults []VegetaResult) {
 _, label := filepath.Split(filename)
 index := strings.LastIndex(label, ".")
 label = label[:index]

 result := &TestResults{
 Version: "1.2",
 Samples: make([]Sample, len(vegetaResults)),
 }

 for i := 0; i < len(vegetaResults); i++ {
 result.Samples[i].Label = label
 result.Samples[i].TimeStamp = vegetaResults[i].Timestamp.UTC().UnixNano() / int64(time.Millisecond)
 result.Samples[i].Elapsed = vegetaResults[i].Latency / int64(time.Millisecond)
 result.Samples[i].ResponseCode = vegetaResults[i].Code

 if vegetaResults[i].Code > 199 && vegetaResults[i].Code < 300 {
 result.Samples[i].Success = true
 }
 }

 buffer := &bytes.Buffer{}
 buffer.WriteString(xml.Header)

 encoder := xml.NewEncoder(buffer)
 encoder.Indent("", " ")
 if err := encoder.Encode(result); err != nil {
 panic(err)
 }

 if err := ioutil.WriteFile(filename, buffer.Bytes(), 0644); err != nil {
 panic(err)
 }
}

func ReadVegeta(filename string) []VegetaResult {
 file, err := os.Open(filename)
 if err != nil {
 panic(err)
 }

 results := []VegetaResult{}

 scanner := bufio.NewScanner(file)
 for scanner.Scan() {
 result := VegetaResult{}
 json.Unmarshal([]byte(scanner.Text()), &result)
 results = append(results, result)
 }

 return results
}

func main() {
 jsonFilename := ""
 jmeterFilename := ""

 flag.StringVar(&jsonFilename, "vegeta", "", "Vegeta JSON filename")
 flag.StringVar(&jmeterFilename, "jmeter", "", "jMeter output filename")
 flag.Parse()

 vegetaResults := ReadVegeta(jsonFilename)
 WriteJMeter(jmeterFilename, vegetaResults)
}

Performance

27

Build it and make it can run inside Jenkins project

cd $GOPATH/vegetatojmeter
go build
mv vegetatojmeter /usr/local/bin/vegetatojmeter

Let’s go to Jenkins and download Performance Plugin [https://wiki.jenkins-ci.org/display/JENKINS/
Performance+Plugin] After installed you can make a report after build in each project. Create a new
project name load-test and freestyle project mode

Add Execute shell build step. Put load test and converter command.

echo "GET http://www.example.com" | vegeta attack | vegeta dump -dumper json -output result.json

vegetatojmeter -vegeta result.json -jmeter result.jtl

https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin

Performance

28

The above script will load test on http://www.example.com and dump all requests into result.json.
After that run vegetatojmeter to convert result.json from vegeta to result.jtl which is jMeter format

On post build Actions Add Public Performance test result report. This action come from the
Performance plugin. The Add a new report JMeter and report files is result.jtl In this example will use
Error Threshold mode. So if you have more than one error, the result is unstable If error more than 3,
the result will be failed. The unstable should be less than failed.

Then save the setting and try build the job. After success the 3 graph will be displayed on the right
hand side. You can see that all of these graphs X-Axis is the build number, right now we have only
one build.

http://www.example.com

Performance

29

Build again to see the different You can see that all graphs has changed

1.15. General coding tips

1.15.1. Garbage collection pointers

#??Maybe make a concurrency chapter ==== Mutexes vs Channels

Go does provide traditional locking mechanisms in the sync package. Most locking issues can be
solved using either channels or traditional locks. It’s depend on you, or you can try which way has
gain performance for you.

Performance

30

1.15.1.1. Mutex

package main

import (
 "math/rand"
 "sync"
)

type MapMutex struct {
 mutex *sync.Mutex
 data map[int]int
}

func NewMapMutex() *MapMutex {
 return &MapMutex{
 mutex: &sync.Mutex{},
 data: make(map[int]int),
 }
}

func (m *MapMutex) Read() int {
 key := rand.Intn(5)

 m.mutex.Lock()
 val := m.data[key]
 m.mutex.Unlock()

 return val
}

func (m *MapMutex) Write() {
 key := rand.Intn(5)
 val := rand.Intn(100)

 m.mutex.Lock()
 m.data[key] = val
 m.mutex.Unlock()
}

Performance

31

1.15.1.2. Channel

package main

import (
 "math/rand"
)

type MapChannel struct {
 lock chan struct{}
 unlock chan struct{}
 data map[int]int
}

func NewMapChannel() *MapChannel {
 m := &MapChannel{
 lock: make(chan struct{}),
 unlock: make(chan struct{}),
 data: make(map[int]int),
 }

 go func() {
 for {
 select {
 case <-m.lock:
 m.unlock <- struct{}{}
 }
 }
 }()

 return m
}

func (m *MapChannel) Read() int {
 key := rand.Intn(5)
 m.lock <- struct{}{}
 val := m.data[key]
 <-m.unlock

 return val
}

func (m *MapChannel) Write() {
 key := rand.Intn(5)
 val := rand.Intn(100)

 m.lock <- struct{}{}
 m.data[key] = val
 <-m.unlock
}

Let’s see the performance for this code in both ways.

Performance

32

1.15.1.3. Benchmark

package main

import (
 "testing"
)

func BenchmarkMutex(b *testing.B) {
 m := NewMapMutex()

 for i := 0; i < 10; i++ {
 m.Write()
 }

 b.ReportAllocs()
 b.ResetTimer()

 for i := 0; i < b.N; i++ {
 m.Read()
 }
}

func BenchmarkChannel(b *testing.B) {
 m := NewMapChannel()

 for i := 0; i < 10; i++ {
 m.Write()
 }

 b.ReportAllocs()
 b.ResetTimer()

 for i := 0; i < b.N; i++ {
 m.Read()
 }
}

We run multi-core to see the different of performance.

go test -v -bench . -cpu=1,2,3,4

Here benchmark result we got. It’s look like the mutex can do it better than channel.

Example Result

PASS
BenchmarkMutex 20000000 74.2 ns/op 0 B/op 0 allocs/op
BenchmarkMutex-2 20000000 75.8 ns/op 0 B/op 0 allocs/op
BenchmarkMutex-3 20000000 75.3 ns/op 0 B/op 0 allocs/op
BenchmarkMutex-4 20000000 73.5 ns/op 0 B/op 0 allocs/op
BenchmarkChannel 3000000 570 ns/op 0 B/op 0 allocs/op
BenchmarkChannel-2 1000000 1536 ns/op 0 B/op 0 allocs/op
BenchmarkChannel-3 1000000 1339 ns/op 0 B/op 0 allocs/op
BenchmarkChannel-4 1000000 1172 ns/op 0 B/op 0 allocs/op

Performance

33

1.15.2. Concatenation string performance

In Go there are many way to do concatenation string, But we do not know which one has a good
performance. This section we will show you how to concatenate string in diffrent ways and show the
performance in each.

1.15.2.1. Use the concatenate operator

Each time you append to the end of a string, it must create a new string and copy the contents of both
the existing string and the appended string into it.

a := "hello"
a += "world"

1.15.2.2. Use strings.Join

strings.Join is a standard library which didn’t use + operator to concat string but using byte slice to
make to string

import "strings"

a := strings.Join([]string{"hello,"world"), "")

1.15.2.3. Use bytes.Buffer

bytes.Buffer is a standard library which concat via io.Writer, Write byte of string into buffer.

import "bytes"

var buffer bytes.Buffer

buffer.WriteString("hello")
buffer.WriteString("world")

1.15.2.4. Performance

We will benchmark all methods and see which method is the best performance.

This is example of benchmark code. Concat 10, 1000, 10000 string in each method.

Performance

34

package concat

import (
 "bytes"
 "strings"
 "testing"
)

func ConcatOperator(b *testing.B, numStr int) {
 b.ReportAllocs()

 for i := 0; i < b.N; i++ {
 str := "a"
 for j := 0; j < numStr; j++ {
 str += "a"
 }
 }
}

func ConcatJoin(b *testing.B, numStr int) {
 b.ReportAllocs()

 for i := 0; i < b.N; i++ {
 strArr := []string{"a"}
 for j := 0; j < numStr; j++ {
 strArr = append(strArr, "a")
 }

 strings.Join(strArr, "")
 }
}

func ConcatBuffer(b *testing.B, numStr int) {
 b.ReportAllocs()

 for i := 0; i < b.N; i++ {
 buf := bytes.NewBufferString("a")
 for j := 0; j < numStr; j++ {
 buf.WriteString("a")
 }
 }
}

func BenchmarkOperator10(b *testing.B) {
 ConcatOperator(b, 10)
}

func BenchmarkJoin10(b *testing.B) {
 ConcatJoin(b, 10)
}

func BenchmarkBuffer10(b *testing.B) {
 ConcatBuffer(b, 10)
}

func BenchmarkOperator1000(b *testing.B) {
 ConcatOperator(b, 1000)
}

func BenchmarkJoin1000(b *testing.B) {
 ConcatJoin(b, 1000)
}

func BenchmarkBuffer1000(b *testing.B) {
 ConcatBuffer(b, 1000)
}

func BenchmarkOperator10000(b *testing.B) {
 ConcatOperator(b, 10000)
}

func BenchmarkJoin10000(b *testing.B) {
 ConcatJoin(b, 10000)
}

func BenchmarkBuffer10000(b *testing.B) {
 ConcatBuffer(b, 10000)
}

Performance

35

The result of benchmark

PASS
BenchmarkOperator10 2000000 769 ns/op 80 B/op 10 allocs/op
BenchmarkJoin10 1000000 1571 ns/op 512 B/op 6 allocs/op
BenchmarkBuffer10 2000000 756 ns/op 152 B/op 3 allocs/op
BenchmarkOperator1000 2000 1121344 ns/op 531376 B/op 1000 allocs/op
BenchmarkJoin1000 20000 68577 ns/op 34784 B/op 12 allocs/op
BenchmarkBuffer1000 50000 21397 ns/op 2440 B/op 9 allocs/op
BenchmarkOperator10000 20 62076805 ns/op 53014704 B/op 10000 allocs/op
BenchmarkJoin10000 2000 834716 ns/op 848096 B/op 21 allocs/op
BenchmarkBuffer10000 10000 195268 ns/op 39304 B/op 13 allocs/op

You can see the result that operator allocs is the number of string. Because it new allocate new string
everytime when append the string. The fastest is bytes.Buffer method. In small concat we can use
operator method instead of buffer method, the performance is not different.

	Microservices in Go
	Table of Contents
	
	Chapter 1. Performance
	1.1. Metrics
	1.2. Why Metrics are important
	1.3. Tools of the trade
	1.4. Never get slower
	1.5. net.Context
	1.6. InfluxDB
	1.6.1. Install InfluxDB

	1.7. Metrics in Go
	1.8. Using Grafana with InfluxDB
	1.8.1. Install Grafana

	1.9. Monitor
	1.10. Stacking Metrics
	1.11. Distributed Tracing with ZipKin
	1.11.1. ZipKin
	1.11.2. Setting up a ZipKin server
	1.11.3. Tracing a Go program.
	1.11.4. Tracing across services.

	1.12. Role of Caches, Queues and Databases
	1.12.1. Overview of why they are important
	1.12.2. Delay everything Queues

	1.13. Go Profiling
	1.14. Load tests
	1.14.1. Boom
	1.14.2. Vegeta
	1.14.3. Load test with Jenkins and jMeter Report

	1.15. General coding tips
	1.15.1. Garbage collection pointers
	1.15.1.1. Mutex
	1.15.1.2. Channel
	1.15.1.3. Benchmark

	1.15.2. Concatenation string performance
	1.15.2.1. Use the concatenate operator
	1.15.2.2. Use strings.Join
	1.15.2.3. Use bytes.Buffer
	1.15.2.4. Performance

