@ “Use GO to build scalable Backends”

Microservices
nGO

-

(o8

\

Nt %

Matthew Campbell

Founder of Langfight and Errplane

Microservices in Go
Matthew Campbell

Microservices in Go
Matthew Campbell

Table of Contents

... Vi
IO o (0] 0= 0 TR USRPRSS 1
00 I/ 1 oS 1
1.2. Why MELICS @re IMPOITANToiuiiiieeieiie ettt st se e saeesreeeesseesaeeneesneenes 1
1.3. TOOIS Of the tradeooeeieeeeee ettt st e e e neenneeneas 1
IR N[YT e T A o 1= SRR 1
ST 0= H G0 1= RSO URP 2
O 1 g U 5 = SRR 2
1.6.1. INStall INFIUXDBooueiiiee ettt e e neesne e e 2
= 1 Lox o T PSS RORRRRRN 3
1.8. Using Grafana With INfIUXDBcccoiiiiiiieieesee e 5
1.8.1. INStAll GIraf@naccceeueeieiiiesieeieee ettt sttt et sr e e et enbeeeenne e 5

LS T/ T (o SR 6
1.10. SEACKING MELIICS ...cceeieieieieieee ettt et st see et e ae et e e e e saeeneeennans 13
1.11. Distributed Tracing With ZIPKINcccooiioiieeee e e 13
00 I A o | QT TR 14
1.11.2. Setting UP & ZIPKIN SEIVEL ..ottt eenneens 15
1.11.3. TraCing @ GO PrOGIaM.ccceeeeereereeeeasteesteeeesseesseseesseessesseesseesseansasseessessessseessessenns 16
1.11.4. TraCing GCrOSS SEIVICES. ...cccuerueerueeeeaseesteeeeseesseenseaseessesasesseessesssessesssesssesssssesssesnsans 19
1.12. Role of Caches, Queues and Databasesccccuvevueeiieeiie i 21
1.12.1. Overview of why they are importantccoceeeeieieneereneseee e 21
1.12.2. Delay everything QUEUEScoiieierierieeie et see e saeenee s 21
0 G T o T . o1 1 SRS 21
IO 0 7= o (= £ 21
0t I = T 0 TSP 22
VA = o = ORI 23
1.14.3. Load test with Jenkins and jMeter REPOITccoveiieriiiieceee e 24
1.15. General COUING TIPS ...cooueeieiiierieeie e siee e eee e e s tesee s esteeeesseestesneesseenseeneesaeesesneesseensens 29
1.15.1. Garbage COIECtioN POINTENScccuiiieieeeee e 29
1.15.2. Concatenation String PerfOrMaNnCEccociieereeieiiereee e s 33

List of Figures

1.1. An example traCe Qiagram.ooeoieeieeieee ettt st et esae e ee e e e sreenne e 14
1.2. Finding traces on ZipKin WED Ul ...t s 18
IR IS o= 101 o o1 o o SRS 19
1.4. Trace spanning MOre than ONE SEIVICESccciieeieieerieeesee e eee e see e te e e seesneesseeeesneeses 21

Vi

Chapter 1. Performance

Now adays having afast serviceis not optional, its a requirement from day one. Slow apps will lose
customers. Mobile apps tend to be on slow connections, its important monitoring performance and
bundling calls together to optimize this. Sometimes its not your code thats slow, but the infastructure,
dns, or even the location of your datacenter. We will go into how we monitor both inside and outside
your infastructure to get the best peformance. We will dig into how we can use InfluxDB and Grafana
to monitor them.

1.1. Metrics

Runtime metrics are the corner of all performance monitoring. If you want to see an amazing intro to
the topic watch CodeHale stalk on metrics (here [https://www.youtube.com/watchv=czes-oalyik)].
Basically the ideais as your application runs in a production environment you are keeping counters
and timers of everything that is happening. So you can pinpoint sgl performance issues on node #6 of
your cluster.

1.2. Why Metrics are important

In the past most performance testing was done with weeks of |oad tests before we put a application in
production. Then we would proceed to have nearly any statistics on how the app performed for actual

users, you know the ones we actually care about. These days most people have runtime metrics inside
their applications. Sometimes as granular as per user or per http transaction.

1.3. Tools of the trade

Talk about Graphite, Statsd, Influxdb and Grafana, Prometheus. A quick overview of the choices for
metrics. Graphite and Statsd are probably the oldest and most stable solutions for graphing, infact they
are great and I’ ve been using them for the last three years. There has been so much writing on them,

| wanted to showcase some of the newer tools. Also | want to show some stacked metrics which are
difficult to achieve in Graphite, but fit nicely into InfluxDb/Prometheus. For the sake of brevity we are
going to be using InfluxDb as our backend stats system, with a Grafana frontend. This book continues
to make opinioated choices on tools, to not overload the user. The concepts can be applied to any tool,
however we like to have one concrete example.

1.4. Never get slower

Number 1 rule of performance, isto never get slower. Thats why you need to do monitoring at three
different stages.

1. performance unit tests on the local dev workstation.
2. Automated load tests on jenkins

3. Application level metrics in production running instances of our applications.

https://www.youtube.com/watch?v=czes-oa0yik
https://www.youtube.com/watch?v=czes-oa0yik

Performance

1.5. net.Context

Net context isareally cool way to pass data throughout pieces of your code, similiar to thread local
storage. Except its extremely explicit. Thereisagreat intro to it https://blog.golang.org/context. We
are going to use Context for two thingsin this book, structured logging and performance tracking. We
can do cool things like tabulate the mysgl performance for afull http request, then we can even go one
step further and track it across multiple servers.

package nai n

i mport (
"fm"

"net/http"

"time"

"gol ang. or g/ x/ net/ cont ext "

)

func cont ext Handl er (w http. ResponseWiter, req *http. Request) {
var timelnM|Iliseconds tine.Duration = 0
ctx := context.WthVal ue(context.Background(), "tinme", &inmelnMIIiseconds)

| ongTi meSql Func(ct x)
| ongTi meSql Func(ct x)
| ongTi meSql Func(ct x)

val := ctx.Value("time").(*tine.Duration)
s :=fnt.Sprintf("Took in expensive functions(%)\n", val.Seconds()/1000)
w.Wite([]byte(s))

}

func | ongTi neSqgl Func(ct x context. Context) {
defer func(s tine.Tine) {

val := ctx.Value("time").(*tine.Duration)
*val = *val + tine.Since(s)
}(time. Now())

tinme. Sl eep(time. Second)

}

func main() {
htt p. Handl eFunc("/", cont ext Handl er)
http. Li st enAndServe(": 8080", nil)

}

1.6. InfluxDB

InfluxDb is ajson timeseries database. Disclosure: | was a previous founder of the company Errplane,
which spun out into this. | never directly worked on influx, however have watched it from a distance
and | am very impressed. We are going to use that as the backend for all of our samples.

1.6.1. Install InfluxDB

We using docker help usinstall.

https://blog.golang.org/context

Performance

docker run --nane influxdb -d -p 8083: 8083 -p 8086: 8086 -e PRE _CREATE DB="netric" tutunii

InfluxDB use port 8083 for web-ui and we can access the database with port 8086. PRE_CREATE_DB
will create database after running success.

1.7. Metrics In Go

In GO we are going to use the metrics library go- et ri cs, inspired by the origina CodeHale Metrics
library in scale. Itsreally easy to setup

In this example we will create web application. The collect number of request and response time to
InfluxDB.

i mport (
"git hub. com GeertJohan/ go-netrics/infl uxdb"
"gi t hub. conrcrow ey/ go-netrics"
"net/http"
"time"

)

func MetricTol nfluxDB(d tine.Duration) {
go i nfl uxdb. | nfl uxdb(rmetrics. Defaul t Regi stry, d, & nfluxdb. Confi g{
Host : "192. 168. 99. 100: 8086",
Dat abase: "exanpl e",
User nanme: "root",
Password: "root",

)
}

func | ndexHandl er (w http. ResponseWiter, r *http. Request) {
w. Wit eHeader (http. St at usCK)
wWite([]byte("Hello world"))

}

func main() {
Metri cTol nfl uxDB(ti ne. Second * 1)

htt p. Handl eFunc("/", | ndexHandl er)

http. Li st enAndServe(":3000", nil)
}

In Met ri cTol nf 1 uxDB() , we create goroutine for monitor metric and save them into influxdb every d
duration. We set durtation in mai n() to 1 second, | ndexHandl er () isahttp handler for display Hel | o
wor | dinhttp://1 ocal ohst: 3000.

Next we will add a counter, whenwegotohttp://1 ocal host: 3000, it will increase 1.

Performance

var requestCounter netrics. Counter

func | ndexHandl er (w http. ResponseWiter, r *http. Request) {
request Count er. I nc(1)

w. Wit eHeader (htt p. St at usCK)
w.Wite([]byte("Hello world"))

func main() {
request Counter = metrics. NewCount er ()
metrics. Regi ster("count_request”, requestCounter)

Metri cTol nfl uxDB(time. Second * 1)
htt p. Handl eFunc("/", | ndexHandl er)

http. Li st enAndServe(": 3000", nil)
}

We created r equest Count er with et ri cs. NewCount er () and register to the metric name
count _request . SO we can see this counter in InfluxDB with column count _request . On
| ndexHandl er () we added r equest Count er. I nc(1) to increase counter by 1.

var responseTinme metrics. Ti nmer

func | ndexHandl er (w http. ResponseWiter, r *http. Request) {
request Count er. I nc(1)
startRegqTime : = time. Now()
defer responseTi me. Updat e(ti ne. Si nce(start ReqTi ne))

w. Wit eHeader (http. St at usCK)
w.Wite([]byte("Hello world"))

}

func mai n() {
request Counter = metrics. NewCount er ()
metrics. Regi ster("count_request”, requestCounter)

responseTine = netrics. NewTi ner ()
metrics. Regi ster("response_tinme", responseTi ne)

Metri cTol nfl uxDB(time. Second * 1)
htt p. Handl eFunc("/", | ndexHandl er)

http. Li st enAndServe(": 3000", nil)

Performance

Next we will add response-time timer. In above code, we created a new timer call r esponseTi me and
register to the metric namer esponse_t i ne. On | ndexHandl er , we created st art ReqTi me and def er
responseTi me. Updat e(ti me. Si nce(startReqTi ne)) to make aresponse-time.

Now we finished in go code, you canrun ht t p: / /| ocal host : 3000 many times to make the data and
send to the InfluxDB. After that we will go to InfluxDB web-ui. Assume that you run InfluxDB in
your local machine, go htt p: //1 ocal host : 8083. You will see the login page. The default InfluxDB
docker will create aroot account, Fill following information into this page and login.

* Username: r oot

» Password: r oot

* Port: 8086

After login, Select metric database which we created on docker run. You will go to the query page.

To seeal columnin our database you can runthisquery | i st series Thisquery will show al of
seriesin your database. Y ou can bring the series to use on the grafana.

Databases Cluster Admins Cluster & root B 182.168.99.100:8086 Disconnect

Data Interface

Read Points
Query

list series

InfluxDB features a SOL-lke query language

list_series_result

time name
(V] count_request.count

0 response_time.timer

Write Point

Time Series Name

Values

1.8. Using Grafana with InfluxDB

Grafanaisthe tool we are going to use for al the charts. As we go through the sections i’ [l show you
also how to visualize step by step.

1.8.1. Install Grafana

We already created Grafana docker image which working with InfluxDB.

Performance

docker run --nanme grafana -d --1ink influxdb:influxdb \
-e | NFLUXDB_HOST=i nf | uxdb \

-e | NFLUXDB_PORT=8086 \

-e | NFLUXDB_NAME=netric \

-e | NFLUXDB _USER=r oot \

-e | NFLUXDB_PASS=r oot \

-p 3300:80 \

hyper wor ks/ gr af ana

The above command is create grafana container and link it to influxdb. So this container can access
the influxdb container. The environment variables that we set are influxdb information for create
datasource in grafana.

Gotourl http://1 ocal host : 3300, you will seethe login page. Use username adni n and password
admi n to login. Thisisthe default account which come with docker image.

1.9. Monitor

After we login to Grafana, we will add graphs for counter request and response-time that we created
go application before. The first page the you will see after login is Dashboar d page

Grafanao)

Starred dashboards Dashboards

Performance

=& Home
J Y starred | tags

A4

Dashboards

+ New <. Import D Playlist

Click Home button on the top, then click New (thiswill create a new dashboard)

ICJ 2% New dashboard - Zoom Out © 6 hours ago to a few seconds ago ¥ [+

+ ADD ROW

Now you are in side the new dashboard, on the left side you will see asmall brown ractangle

Performance

19 | S8 Newdashboard . w e &

Collapse row

Add Panel Dashboard list
Set height Graph

Move Single stat
Row editor Text

Delete row

+ ADD ROW

Click that rectangle and Select Add Panel _, Graph

Y starred | tags

A4

Dashboards

+ New <. Import » Playlist

When you created, don’t forget save the dashboard (disk icon on the top menu). Click Home button on
the top, then click New (thiswill create a new dashboard)

Performance

~

2O\ 28 New dashboard . w @ ZoomOut @ 6 hours ago to a few secondsagov

+ ADD ROW

Now you are in side the new dashboard, on the left side you will see a small brown ractangle

19X | &8 Newdashboard . w e o

Collapse row

Add Panel Dashboard list
Set height Graph

Move Single stat
Row editor Text

Delete row

+ ADD ROW

Click that rectangle and Select Add Panel _ Graph When you created, don’t forget save the
dashboard (disk icon on the top menu)

Performance

28 New dashboard . + x

view edit duplicate share

no title (click here)

No datapoints @

+ ADD ROW

On middle top of graph, clickno title (click here) thenclick edit for edit graph

22 New dashboard . g : 3| Back to dashboard Zoom Out © 5 minutes ago to a few seconds ago

no title (click here)

14:24:00 14:24:30

= response_time.timer.mean

Lubad Graph General Metrics Axes & Grid Display Styles Back to dashboard

® series response_time.timer

select mean(mean) where group by time 30s and no fill

group by time (2]

© alias pattemns stacking & and fill group by time

£ influxdb + Add query

On Metrics tab, you will see the series this series come from datasource. (you can see influxdb series
by query I'i st seri es ininfluxdb query page) Input r esponse_ti me. ti mer seriesthen you can
select fields of seriesto display on graph. This example input r esponse_ti me. ti mer seriesand select
mean of mean group time 30s

Performance

~

Q =% New dashboard . w e Back to dashboard Zoom Out ® 15 minutes ago to a few seconds ago ¥ <

One-Minute Request Rate

0
15:38 15:39 15:40 15:43 15:44 15:45 15:46 15:47 15:48 15:49 15:50 15:51

== response_time.timer.mean

Ll Graph General Metrics Axes&Grid Display Styles Time range Back to dashboard

General options

Title Span Height Transparent

a

One-Minute Request Ra 6 v

Drilldown / detail link @

+ Add link

Y ou can change the title of this graph by go to General tab and change it in title input form

22 New dashboard . g : 3| Back to dashboard Zoom Out © 5 minutes ago to a few seconds ago

no title (click here)

14:27:30 14:28:00

= response_time.timer.mean

Ll Graph Axes & Grid Display Styles Time range Back to dashboard

nanoseconds (ns)
Left Y AL Min Scaletype linear %+ Label
Right Y none milliseconds (ms) Min Scaletype linear 4+ Label
duration seconds ()

Show Axis data
data rate
Thresholds B Line mode
energy »
weather »
Legend velocity » Jht side Hide empty Legend values Min Avg Current Total

Decimals

Let’s change unit on Y-Axis, click on Axes & Grid tab then click short on Left Y row choose duration
_, nhanoseconds (ns) Then click save dashboard on the top menu (disk icon on the top menu)

Performance

2O\ =& New dashboard . w @ ZoomOut @ 15 minutes ago to a few seconds agoy

no title (click here) no title (click here)

15:26 15:28 15:30 15:32 15:34 15:38

== response_time.timer.mean

+ ADD ROW

Next we will add counter of request into this dashboard Click that rectangle and Select Add Panel _
Single stat

LON 52 New dashboard . W :) Back to dashboard ~ ZoomOut @ 5 minutes ago to a few seconds ago

@ Singlestat General Metrics Options Time range Back to dashboard

® series count_request.count

select last(count) where group by time

group by time 9

© alias pattemns stacking & and fill group by time

= influxdb + Add query

Again click the top middie of single stateno title (click here) thenclick edit Now we areinside
of single sate, This state we will add request counter. The seriesiscount _r equest . count select last
of count

Performance

=2 New dashboard . kg (g ZoomOut 5 minutes ago to a few seconds ago

Response time Total Request

14:36

= response_time.timer.mean

Then click save dashboard on the top menu (disk icon on the top menu) Result

1.10. Stacking Metrics
1.11. Distributed Tracing with ZipKin

In this section, we will take alook at distributed tracing. Usually tracing a single program allows us to
see how an action performed on it tranglates into calls to each components of the system and how long
those calls take. But with microservices architecture, your program may only constitute a single part
of acomplex system and an action performed at one end may translate into many service calls across
multiple machines.

Let’'sfirst look at how we might manually trace a ssmple Go program:

A simple Go program.

13

Performance

package nmin

i mport (
"fm"
"time"

func main() {
fmt.Println(outer())

func outer() int {
time.Sleep(l * tinme.Second)
return innerl() + inner2()

func innerl() int {
time.Sleep(l * tinme.Second)
return 1

func inner2() int {
time.Sleep(l * tinme.Second)
return 1

}

From the program we can deduce that running the mai n() function will result in acall to the out er ()
function, taking at least 1 second and that the function itself also calls the two other functions, namely
i nner 1() andi nner 2() eachtaking at least a second.

A trace diagram from the above program might looks like this:

Figure 1.1. An exampletrace diagram.

main () 3.02s - 100%

outer() 3.01s - 99%

From the diagram we can see the breakdown of the callsin visual form. Having a diagram like this
allows usto quickly and easily identify the bottleneck in the system during optimization as well as
quickly identify any potential problems.

1.11.1. ZipKin

ZipKin (http://twitter.github.io/zipkin/) is a distributed tracing system designed specificaly for this
scenario and isitself atracing server that accepts trace " Spans' sent from multiple locations. Let’s
first take alook at how a ZipKin span looks like.

14

http://twitter.github.io/zipkin/

Performance

Sample ZipKin span in JSON format.

{
"trace_id": 3871090523923428400, //
"name": "main.firstCall", /1
"id": 3871090523923428400, /1
"parent _id": null,
"annotations": [/1
{
"timestanmp”: 1433850777559706,
"val ue": "cs", [/
"host": {
"ipv4d": O,
"port": 8080,
"service_name": "go-zipkin-testclient"
}
“duration": null
}
{
"tinmestanmp”: 1433850777564406,
"val ue": "cr",
"host": {
"ipv4d": O,
"port": 8080,
"service_name": "go-zipkin-testclient"
}
“duration": null
}
],
"bi nary_annotations": [],
"debug": true
}

Since ZipKin is designed for distributed tracing, we may have data coming from different
soures, thetracel d hereis an identifier that will helps us identify Spans that originate from the
same action so we can group them together and analyze the parts.

ZipKin spans also have ananme which is usually the qualified name of the method under trace or
the name of the network operation being performed.

Each individual ZipKin spans also haveitsowni d and apar ent _i d. These two values help
identify the relationship between different ZipKin spans. For example, atrace coming from the
mai n() functionin our initial example could be a parent to a span identifying the out er () call
and likewise the trace span from out er () would have 2 children being the traces from i nner 1()
andi nner2() cal.

ZipKin spans usually also contains two annotations with it, the timestamps at the start of the
operation and another at the end so we can use this value to deduce the time the service took.
For a client-side operation, the pair of values are named " cs" which stands for "client send" and
"cr" which stands for "client receive". On the server-side the pair of values are named "sr" and
"ss" instead referring to "server receive" and "server send" respectively.

1.11.2. Setting up a ZipKin server

Running Zipkin, we have set up following Zipkin services.
* Scribe Collector servicefor communicate with client to send data

e Wb ui servicefor query our span and seein graphic

15

Performance

* Query servicefor web ui can query datain different data store
* Cassandr a data store for collect data from Scribe Collector

Thisisquitealot for setup for testing and development. The easiest way we setup is combine them
into one docker container and run it with one docker run. Another solution is docker-zipkin [https.//
github.com/itszero/docker-zipkin], packed all services with shell script.

Before install please ensure that your machine have 8 gigabit ram or more. First we have to clone
docker-zipkin repository into your machine

$ git clone git@ithub.comitszero/docker-zipkin.git
In deploy folder you will see 2 shell scripts.

1. bui I d. sh run docker build zipkin services

2. depl oy. sh run docker run zipkin services

Run bui | d. sh for build docker images. Y ou have to wait for awhile for complete this.

$./depl oy/ buil d. sh

After we finished building docker image. Let’s check theresult in docker i mages command, the
result will look like this.

$ docker images

REPGCSI| TORY TAG | MAGE | D CREATED VI RTUAL SI ZE
itszero/ zi pki n-cassandra | atest f e45e32f 270c 2 minutes ago 467 MB
itszero/zi pkin-coll ector | at est 0444124a7ede 2 minutes ago 936.2 MB

i tszero/ zi pki n-web | at est a8aed6955ab0 2 mnutes ago 936.2 MB

i tszero/ zi pki n-query | at est f 106f be382ba 2 mnutes ago 936.2 MB

i tszero/ zi pki n- base | at est 3302a4ac3ch9 2 minutes ago 936.2 MB

Right now we got all zipkin servicesimages. Let’s run all of them with depl oy. sh Before run deploy
we have config a bit inside depl oy. sh. Inline 5 of depl oy. sh you will see the ROOT_URL config.
Changeit to your url or ip address for access zipkin web ui. in this example will changeit toip

127. 0. 0. 1. You change port with PUBLI C_PORT default is 8080.

PUBLI C_PORT="8080"
ROOT_URL="http://127.0.0. 1: $PUBLI C_PORT"

Save and run depl oy. sh. You will seeall servicesrun at the same time.

$ depl oy. sh

Let’s check all servicesisruning correctly by docker ps.

$ docker ps

1.11.3. Tracing a Go program.

Now that we have ZipKin setup, let’s send some tracing data to it. For this we will use the
spacenonkeygo/ noni t or library on GitHub. Let’ s add some imports to our simple program first:

16

https://github.com/itszero/docker-zipkin
https://github.com/itszero/docker-zipkin
https://github.com/itszero/docker-zipkin

Performance

i mport (
llfmll
“time"
"gol ang. or g/ x/ net/ cont ext " /1
"gopkg. i n/ spacenonkeygo/ noni t or. v1" /1

"gopkg. i n/ spacenonkeygo/ moni t or. v1l/trace/ gen-go/ zi pkin* //

The library makes use of the experiemental HT TP context package gol ang. or g/ x/ net /

cont ext for sharing values between multiple middiewares and misc HTTP calls.
Thisisthelibrary itself, imported viagokg. i n service so we have version locking while the
master branch on GitHub changes.

We will need to supply some ZipKin-specific configuration as well so we need to import this
generated code package.

Now that we have all the components imported, let’sinitialize the tracing library:

trace. Configure(1, true, &zipkin.Endpoint{
| pv4: 127*0x01000000 + 1,
Port: 8080,
Servi ceName: "go-zipkin-testclient"”,

)

if c, e :=trace.NewScribeCollector("0.0.0.0:9410"); e != nil {
pani c(e)

} else {
trace. Regi st er TraceCol | ect or (c)

}

The Confi gure() callssetup the tracing library with information about our current machine

and running program. This line specifies the | P address of the service with an integer value that
represents the address 127.0.0.1

Thetrace library delivers ZipKin spans embedded inside Twitter’ s Scribe logging protocol so we
are creating a new spans collector here that can talk the Scribe protocol and which will sends it
to our ZipKin server running at address 0.0.0.0 on port 9410. The Regi st er TraceCol | ect or ()
call registers the collector as our default collector for al subsequent t r ace. Trace() calls.

And then for each call, we can now call thet race. Trace() method to logs the times taken during
each call. The function returns another function for us to invoke at the end of the tracing method.
This method also requires that we passin acont ext . Cont ext . Methods constituting the same chain
of operation should aso share the same context instasnce. For the very first call we can use the

cont ext . Backgr ound() method to obtain a new, empty context.

Let’stry adding tracing code for the first method call now:

func outer() int {
ctx : = context.Background()
done : = trace. Trace(ct x)

tinme.Sleep(l * tinme. Second)
result := innerl() + inner2()

done(ni)
return result

17

Performance

Note that the done() function returned from theinitial t r ace. Trace() call above also lets us pass

in apointer to anerror variable aswell. We can passin a pointer to our error return value variable
should we have one and if the method pani c() for any reason, the tracing call will pick it up and sets
the error return value for us.

This pattern however, can be more briefly achieved in Go using the def er keyword.

func outer() int {
ctx := context.Background()
defer trace. Trace(&ctx)(nil)

time.Sleep(l * tine. Second)
return innerl() + inner2()

}

Likewisefor thei nner 1() andi nner2() methodswe can call thetrace. Trace() method to begin
the trace and invoke the result with def er to wrap up the call. We will also need to modify the method
so that we can pass the cont ext . Cont ext instance through as well.

[l return innerl(ctx) + inner2(ctx)

func innerl(ctx context.Context) int {
defer trace. Trace(&ctx)(nil)
tinme.Sleep(1 * tinme.Second)
return 1

}

func inner2(ctx context.Context) int {
defer trace. Trace(&ctx)(nil)
tinme.Sleep(1 * tinme. Second)
return 1

}

Try running the program a few times to generate some spans. Using the ZipKin web Ul you can
browse and see the span data being sent to ZipKin as well as visualize the call tree.

From the web Ul, use the service drop-down box to select the service we have named in our code.
Clicking on "Find Traces' should produce alist of recent traces being sent to the server.

Figure 1.2. Finding traceson ZipKin web Ul.

Zipkin Investigate system behavior Find a trace

Duration: EX311) Services:) Depth:) Total Spans:)

Expand All Collapse All b

go-zipkin-testclient x3

Services 602.328ms 1.20ds 1.B06s 2.409s 3.011s

8 go-zipkin-testclient 3.011s : main.outer . .
go-zipkin-testclient . . 1.002s : main.inner1

go-zipkin-testclient . . . : 1.005s : main.inner2

18

Performance

Y ou can see the call trace graph similar to what we' ve drawn ourselves earlier from the Ul. Y ou can
also click on each individual call to see further breakdown and details about the calls:

Figure 1.3. Span inspection

go-zipkin-testclient.main.outer: 3.011s

AKA: go-zipkin-testclient

Relative Time Duration Service Annotation Host
go-zipkin-testclient Client Send 127.0.0.1:8080
go-zipkin-testclient Server Receive 127.0.0.1:8080
go-zipkin-testclient Client Receive 127.0.0.1:8080

go-zipkin-testclient Server Send 127.0.0.1:8080

1.11.4. Tracing across services.

To provide a complete tracing picture across services there needs to be away for each of the services
to communicate and share the current tracing session. If all your servicestalk over HTTP, the tracing
library we have used earlier already providesthis.

Let’slook at how to make asimple HT TP service with tracing using the spacenonkeygo/ noni t or
library. First let’s make asimple HTTP route:

A simple GOHTTP service.

19

Performance

package mai n

i mport (
"net/http"

)

func Hel | oHandl er (w http. ResponseWiter, r *http. Request) {
w. Wit eHeader (htt p. St at usCK)
w.Wite([]byte("Hello world #2"))

}

func main() {
http. Li st enAndServe(": 3002", http. Handl er Func(Hel | oHandl er))

}

To be able to receive the trace session from another service, we will need to wrap this handler inside a
trace. TraceHandl er and to be ableto passaong acont ext . Cont ext from the client, we'll need to

alsowrap thatintrace. Cont ext W apper aswell. Our HTTP Handler will also now needs to accepts

acont ext . Cont ext that iscoming from the previous trace(s), if any.

Tracing added tothe HTTP server.

[l inmport "gol ang. or g/ x/ net/cont ext™"
/1 inmport "gopkg.in/spacenmonkeygo/ nonitor.vl/trace"
/1 inmport "gopkg.in/spacenmonkeygo/ nonitor.vl/trace/ gen-go/zipkin"

func Hel | oHandl er (ct x context.Context, w http. ResponseWiter, r *http. Request) {
w. Wit eHeader (htt p. St at usCK)
w.Wite([]byte("Hello world #2"))

}

func main() {
handl er := trace. Cont ext Wapper (trace. TraceHandl er (
trace. Cont ext HTTPHandl er Func(Hel | oHandl er)))
http. Li st enAndServe(": 3002", handl er)

}

Just like normal Go programs, we will also need to Conf i gure() thetrace so that it knows where
to send the data just like we did previously. We will omit the code here sinceiit is basically the same
code with a different service name.

Now our server will now be able to trace itself aswell as add spans to any existing traces being passed
over from other services. The cont ext . Cont ext instance that was passed to our HTTP server can also
be used in further tracing as well. For example, we can adds a mock SQL call and add a step to the
trace aswell:

func Hel | oHandl er (ct x context.Context, w http. ResponseWiter, r *http. Request) {
RandonBSQLCal | (ct x)
w. Wit eHeader (htt p. St at usCK)
w.Wite([]byte("Hello world #2"))

}

func RandonSQ.Cal | (ctx context. Context) ({
defer trace. Trace(&ctx) (nil)
time. Sl eep(time.Duration(rand.Int()%0000) * time.M crosecond)

}

20

Performance

If you have more methods that you think you will need tracing information from, simply pass along
the cont ext . Cont ext instance to each method and call def er trace. Trace() () onit.

Below is an example of atrace on the web Ul that goesfrom ahel | 01 serviceto hel | 02 over a
network call and then to the RandonsQLCal | () method:

Figure 1.4. Trace spanning mor e than one services

Zipkin Investigate system behavior =~ Find atrace = Aggregates

Duration: Services:) Depth: €) Total Spans:)

Expand All Collapse All

hello1 x2

Services 2.652ms 5.304ms 7.957ms 10.609ms 13.262ms
13.262ms : GET
13.211ms : GET

10.560ms : main.RandomSQLCall -

Asyou can see, with ZipKin you con trace your architecture from end-to-end in one place without
having to correlate data from disparate services yourself.

1.12. Role of Caches, Queues and
Databases

We are just giving a brief overview here as each one has a specia chapter.

1.12.1. Overview of why they are important

1.12.2. Delay everything Queues
1.13. Go Profiling

Go already comes with profiling tools. The best place for learning pprof tool is http://blog.golang.org/
profiling-go-programs

1.14. Load tests

We do load tests for checking the performance in our system, and how many we can handle
incomming request. There are many tools can help you do load test and show areport. In this section
we will pick load tests tools which written in Go.

Thisis aexample code for running load test, It’ s just Hello world application.

21

http://blog.golang.org/profiling-go-programs
http://blog.golang.org/profiling-go-programs

Performance

package mai n
i mport (

"net/http"
)

func I ndexHandl er (w http. ResponseWiter, r *http. Request) ({
w. Wit eHeader (htt p. St at usCK)
w.Wite([]byte("Hello world"))

}

func main() {
htt p. Handl eFunc("/", | ndexHandl er)

http. Li st enAndServe(": 3000", nil)
}

1.14.1. Boom

Boom is similar to Apache bench (ab) tool but written in go.
We can install Boom with go get
go get github. com rakyl|/boom

Thisis an example command we will runon htt p: //1 ocal host : 3000

boom -n 1000 -c¢ 50 -m GET http://I| ocal host: 3000

This command run 1000 requests and 50 concurrents per second. The result will be like this.

22

Performance

Summary:

Total: 1.1616 secs.

S| owest :
Fast est :
Aver age:

1. 0122 secs.
0. 0015 secs.
0. 0108 secs.

Request s/ sec: 860. 8770
Total Data Received: 11000 bytes.
Response Size per Request: 11 bytes.

St atus code distribution
[200] 1000 responses

Response time hi stogram

0.002 [1] |
. 103 [995] | ####H##BHHHHHHHRHHHH AR HHHH AR H T
.204 [0] |
.305 [0] |
. 406 [1] |
.507 [0] |
. 608 [0] |
. 709 [0] |
. 810 [0] |
. 911 [0] |
. 012 [3] |

P OOOOOOOOOo

Lat ency distribution

10% i n 0.0054 secs.
25% in 0.0063 secs.
50% in 0.0072 secs.
75% i n 0.0082 secs.
90% in 0.0101 secs.
95% in 0.0108 secs.
99% in 0.0128 secs.

The report in Boom look easily and nice histogram. Y ou can see the how many response http status
code.

1.14.2. Vegeta

Vegetais another one written in Go. Support multiple target and config file.

We can install Vegetawith go get

go get github.comtsenart/vegeta
go install github.conitsenart/vegeta

Hereis our load test command

echo "CGET http://I|ocal host: 3000" | vegeta attack | vegeta report

We pipe string url and send to veget a at t ack, after attacked we using veget a report to display the
result. And thisis the example result.

23

Performance

Requests [total] 500
Duration [total, attack, wait] 9.981421067s, 9.980964392s, 456.675us

Latenci es [nean, 50, 95, 99, nmax] 532. 152ps, 401.337ps, 1.042179nms, 34.251801nms, 34.25

Bytes In [total, nean] 5500, 11.00
Bytes Qut [total, nean] 0, 0.00
Success [ratio] 100. 00%

St at us Codes [code: count] 200: 500
Error Set:

If you want the report in another format like json or graph (Dygraphs [http://dygraphs.com]). you just
add - reporter flagand - out put flag

echo "CGET http://I|ocal host: 3000" | vegeta attack | vegeta report -reporter json -output |

echo "CGET http://I|ocal host: 3000" | vegeta attack | vegeta report -reporter plot -output |

Thisis the example command that report in json format and output tor esul t . j son Another example
isreporter in graph the the result is html format.

Vegeta Plot

Latency (ms)

0 0.5 1 1.5 2 2.5 3 3.5 [4.5
Seconds elapsed
Download as PNG

Open graph result, you will see graph like this.

1.14.3. Load test with Jenkins and jMeter Report

| this section we will talk about how to make an automate load test in Jenkins and show the result with
jMeter Report. Jenkins has plugin (Performance Plugin [https://wiki.jenkins-ci.org/display/JENKINS/
Performance+Plugin]) which read and display jMeter report. This example will use vegetatool for
load test and convert it to jMeter result format for display report in Jenkins. The goal of this scenario
for auto detect performance failure.

Let'stry

Install vegeta tool into Jenkins machine and make it can run inside Jenkins project

24

http://dygraphs.com
http://dygraphs.com
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin

Performance

go get github.conltsenart/vegeta
go install github.conltsenart/vegeta
mv $GOPATH bi n/ vegeta /usr/| ocal / bi n/ veget a

Make atool for convert vegetato jMeter. Thisis an example to convert

25

Performance

package mai n

i mport (

type

type

type

func

"bufi 0"

"byt es"
"encodi ng/j son”
"encodi ng/ xm "
"flag"
"iolioutil"

"os
"pat h/fil epath”
"strings"
"time"

TestResults struct {

XMLNanme xm . Name " xml :"testResults"®
Version string “xml:"version,attr"’
Sanpl es [] Sanple “xm :"httpSanpl e""

Sanpl e struct {

Label string “xm:"lb,attr""
Ti meSt anp int64 “xm:"ts,attr"’
Success bool xm:its,attr"”
El apsed int64 “xm:"t,attr"’
ResponseCode i nt “xml i "rc,attr"”

Veget aResul t struct {

=

Code i nt “json: "code"®
Tinmestanp tinme. Tine “json:"tinestanmp"’
Lat ency i nt 64 “json: "l atency""

iteJMeter(filename string, vegetaResults []VegetaResult) {

_, label :=filepath.Split(filenane)

i ndex := strings. Lastlndex(label, ".")
| abel = | abel [:index]

result := &TestResults{

Version: "1.2",
Sanpl es: make([] Sanmpl e, |en(vegetaResults)),

}

for i :=0; i < len(vegetaResults); i++ {
resul t. Sanpl es[i].Label = | abe
result. Sanpl es[i].TimeStanp = vegetaResul ts[i]. Ti nestanp. UTC() . Uni xNano(|
result. Sanpl es[i].El apsed = vegetaResults[i].Latency / int64(time.MIIisi
resul t. Sanpl es[i]. ResponseCode = vegetaResults[i].Code
if vegetaResults[i].Code > 199 && vegetaResults[i].Code < 300 {

result. Sanmpl es[i].Success = true

}

}

buf fer := &bytes. Buffer{}
buf fer. WiteString(xm . Header)

encoder := xm . NewEncoder (buffer)

encoder . | ndent ("", " ")
if err := encoder. Encode(result); err !'= nil {
pani c(err)

}

Performance

Build it and make it can run inside Jenkins project

cd $GOPATH veget at oj net er
go build
mv veget atoj neter /usr/local/bin/vegetatoj neter

Let’s go to Jenkins and download Performance Plugin [https://wiki.jenkins-ci.org/display/JENKINS/
Performancet+Plugin] After installed you can make a report after build in each project. Create a new
project name load-test and freestyle project mode

It
eMNaMe | oad-test
+ Freestyle project

This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for something other than
software build.

Build a maven project
Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the configuration.

Build multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on multiple environments, platform-specific builds, etc.

Monitor an external job

This type of job allows you to record the execution of a process run outside Jenkins, even on a remote machine. This is designed so that you can use Jenkins as a
dashboard of your existing automation system. See the documentation for more details.

Copy existing Item
Copy from

oK

Add Execute shell build step. Put load test and converter command.

Jenkins load-test configuration
Build when a change 1s pushed to GitHuD
GitHub Pull Request Builder
Poll SCM (2]
Build Environment
Send files or execute commands over SSH before the build starts ®
Send files or execute commands over SSH after the build runs @
Assign unique TCP ports to avoid collisions @
Locks
SSH Agent
Run an Android emulater during build @
Build
Execute shell ®
Command , ; . .
echo "GET http://www.example.com" | vegeta attack | vegeta dump -dumper json -output result.json
vegetatojmeter -vegeta result.json -jmeter result.itl
“
See the list of available environmen! variables
Add build step ~
Post-build Actions
Add post-build action ~
m ary
I Help us localize this page Page generated: May 27, 2015 12:44:53 AM REST APl Jenkins ver. 1.582

echo "CGET http://ww. exanpl e. coni’ | vegeta attack | vegeta dunp -dunper json -output

vegetatoj neter -vegeta result.json -jneter result.jtl

27

resi

https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin

Performance

The above script will load test on http://www.example.com and dump all requests into result.json.
After that run vegetatojmeter to convert result.json from vegetato result.jtl which isjMeter format

On post build Actions Add Public Performance test result report. This action come from the
Performance plugin. The Add a new report IMeter and report filesis result.jtl In this example will use
Error Threshold mode. So if you have more than one error, the result is unstable If error more than 3,
the result will be failed. The unstable should be less than failed.

Jenkins load-test-ebook configuration

Publish Performance test result report

Performance report

Select mode:

Use Error thresholds on single build:

Use Relative thresholds for build comparison:

Performance display

Apply

JMeter

Report files result

Add a new report ~
Relative Threshold@ Error Threshold

Unstable 1

Failed 3

Unstable % Range 0.0 0.0

Failed % Range 0.0 0.0

© Compare with previous Build” ' Compare with Build number

0

Compare based on Average Response Time H

Performance Per Test Case Mode
Show Throughput Chart

Advanced...

Then save the setting and try build the job. After success the 3 graph will be displayed on the right
hand side. Y ou can seethat all of these graphs X-Axis s the build number, right now we have only

one build.

Jenkins load-test
=4 Changes

L Workspace

£ Buid Now

(& Delete Project

2. Configure

[Performance Trend

Build History trend =

@ # May 27, 2015 1:00:23 AM

[RSS for all [) RSS for failures

E Workspace

ENABLE AUTQ REFRESH
|80y gescripuon

Performance Trend

Throughput
S, Last Successful Artifacts 8 50
[£] dashBoard_result.xml 415 B view é a0
@
0000030 g 20
—#" Recent Changes [
 S— w
g0
=
. o
Permalinks £ O
e R ts Per 5 d
s Last build (#1). 14 sec ago __eques s -er ec:.m s
» Last stable build (#1), 14 sec ago ~ Responding time
» Last successful build (#1), 14 sec ago 3s
30
25
w 20
B
10
s
o
®
‘—90% line ===average ==median
Percentage of errors
100
80
&0
®

—crrors

28

http://www.example.com

Performance

Build again to see the different Y ou can see that al graphs has changed

Jenkins load-test
= Changes

L Workspace

£) Build Now

@ Delete Project

& Configure

'@ Performance Trend

Build History trend =
@ #2 May 27,2016 1.04:17 AM
@ #1 May 27, 2015 1:00:23 AM

) BSS for all) RSS for failures

E Workspace

47y, Last Successiul Artifacts
=

[E] dashBoard_result.xml 415 Bview

Ao
—#" Recent Changes
S—

Permalinks

e Last build (#2). 15 sec ago
= Last stable build (#2), 15 sec ago
= Last successful build (#2), 15 sec ago

1.15. General coding tips

1.15.1. Garbage collection pointers

#?7?Maybe make a concurrency chapter ====

Mutexes vs Channels

ms

Requests Per Seconds

ENABLE AUTO REFRESH
|#20u gescrpuon

Performance Trend

Throughput

#1
#2

=Requests Per Seconds

Responding time

|_90% line we=average =—median

Percentage of errors

—TOrS

Go does provide traditional locking mechanismsin the sync package. Most locking issues can be
solved using either channels or traditional locks. It s depend on you, or you can try which way has

gain performance for you.

29

Performance

1.15.1.1. Mutex

package mai n

i mport (
“mat h/ r and"
"sync"

)

type MapMiutex struct {
mut ex *sync. Mut ex
data map[int]int

}

func NewMapMut ex() *MapMitex {
return &vapMit ex{
mut ex: &sync. Mut ex{},
data: make(map[int]int),

}

func (m *MapMit ex) Read() int {
key := rand. I ntn(5)

m rut ex. Lock()
val := m data[key]
m nut ex. Unl ock()

return val
func (m *MapMiutex) Wite() {

key := rand. I ntn(5)
val rand. | nt n(100)

m rut ex. Lock()
m dat a[key] = val
m nut ex. Unl ock()

30

Performance

1.15.1.2. Channel

package mai n

i mport (
“mat h/ r and"
)

t ype MapChannel
| ock

struct {
chan struct{}

unl ock chan struct{}

dat a

}

func NewMapChannel ()

map[int]int

*MapChannel {

m : = &vapChannel {

| ock:
unl ock:
dat a:

}

go func() {
for {
}

10O

return m

func (m *MapChannel) Read()
:= rand. I nt n(5)

key

make(chan struct{}),
make(chan struct{}),
make(map[int]int),

sel ect {
case <-m | ock:
m unl ock <- struct{}{}

}

int {

mlock <- struct{}{}

val :=
<-m unl ock

return val

m dat a[key]

func (m *MapChannel) Wite() {

key :
val

rand. | nt n(5)
rand. | nt n(100)

mlock <- struct{}{}

m dat a[key] =
<-m unl ock

}

val

Let’'s see the performance for this code in both ways.

31

Performance

1.15.1.3. Benchmark

package mai n

i mport (
"testing"

)

func Benchmar kMutex(b *testing.B) ({
m : = NewiapMut ex()
for i :=0; i < 10; i++ {

mWite()
}

b. Report Al |l ocs()
b. Reset Ti mer ()

for i :=0; i <b.N i++ {
m Read()

}

func Benchmar kChannel (b *testing. B) {
m : = NewivapChannel ()

for i :=0; i < 10; i++ {
mWite()
}

b. Report Al |l ocs()
b. Reset Ti mer ()

for i :=0; i <b.N i++ {
m Read()

}

We run multi-core to see the different of performance.

go test -v -bench . -cpu=l, 2,3,4
Here benchmark result we got. It slook like the mutex can do it better than channel.

Example Result

PASS

Benchmar kMut ex 20000000 74.2 ns/op 0 B/ op 0 allocs/op
Benchmar kMut ex-2 20000000 75.8 ns/op 0 B/ op 0 allocs/op
Benchmar kMut ex-3 20000000 75.3 ns/op 0 B/ op 0 allocs/op
Benchmar kMut ex-4 20000000 73.5 ns/op 0 B/ op 0 allocs/op
Benchmar kChannel 3000000 570 ns/op 0 B/ op 0 allocs/op
Benchmar kChannel - 2 1000000 1536 ns/op 0 B/ op 0 allocs/op
Benchmar kChannel - 3 1000000 1339 ns/op 0 B/ op 0 allocs/op
Benchmar kChannel - 4 1000000 1172 ns/ op 0 B/ op 0 allocs/op

32

Performance

1.15.2. Concatenation string performance

In Go there are many way to do concatenation string, But we do not know which one has a good
performance. This section we will show you how to concatenate string in diffrent ways and show the
performance in each.

1.15.2.1. Use the concatenate operator

Each time you append to the end of a string, it must create a new string and copy the contents of both
the existing string and the appended string into it.

a := "hello"
a += "worl d"

1.15.2.2. Use strings.Join

strings.Join is a standard library which didn’t use + operator to concat string but using byte slice to
make to string

i mport "strings"

a := strings.Join([]string{"hello,"world"), "")

1.15.2.3. Use bytes.Buffer

bytes.Buffer isa standard library which concat viaio.Writer, Write byte of string into buffer.
i mport "bytes"
var buffer bytes. Buffer

buf fer. WiteString("hello")
buf fer. WiteString("world")

1.15.2.4. Performance

We will benchmark all methods and see which method is the best performance.

Thisis example of benchmark code. Concat 10, 1000, 10000 string in each method.

33

Performance

package concat

i mport (
"byt es"
"strings"
"testing"

)

func Concat Operator(b *testing.B, nunttr int) ({
b. Report Al |l ocs()

for i :=0; i <b.N i++ {
str ;= "a"
for j :=0; j < nunBtr; j++ {
str += "a"
}
}

}

func ConcatJoin(b *testing.B, nunStr int) {
b. Report Al |l ocs()

for i :=0; i <b.N i++ {
strArr := []string{"a"}
for j :=0; j < nunBtr; j++ {
strArr = append(strArr, "a")
}
strings.Join(strArr, "")
}
}
func ConcatBuffer(b *testing.B, nuntStr int) {
b. Report Al |l ocs()
for i :=0; i <Db.N i++ {
buf := bytes. NewBufferString("a")
for j :=0; j < nunBtr; j++ {

buf . WiteString("a")
}

func Benchmar kOper at or 10(b *testing.B) {
Concat Oper at or (b, 10)

func Benchmar kJoi n10(b *testing. B) {
Concat Joi n(b, 10)

func Benchmar kBuf f er 10(b *testing. B) {
Concat Buf f er (b, 10)

func Benchmar kOper at or 1000(b *testing. B) {
Concat Oper at or (b, 1000)

func Benchmar kJoi n1000(b *testing.B) {
Concat Joi n(b, 1000)

func Benchmar kBuf f er 1000(b *testing.B) {

Performance

The result of benchmark

PASS

Benchnmar kQper at or 10 2000000 769 ns/op 80 B/ op 10 al | ocs/ op
Benchnmar kJoi n10 1000000 1571 ns/op 512 B/ op 6 all ocs/op
Benchnar kBuf f er 10 2000000 756 ns/op 152 B/ op 3 all ocs/op
Benchnar kQOper at or 1000 2000 1121344 ns/ op 531376 B/ op 1000 al | ocs/ op
Benchnmar kJoi n1000 20000 68577 ns/ op 34784 Bl op 12 al l ocs/ op
Benchnmar kBuf f er 1000 50000 21397 ns/ op 2440 B/ op 9 all ocs/op
Benchnar kOper at or 10000 20 62076805 ns/op 53014704 B/op 10000 all ocs/ op
Benchnmar kJoi n10000 2000 834716 ns/op 848096 B/ op 21 all ocs/op
Benchnmar kBuf f er 20000 10000 195268 ns/ op 39304 B/ op 13 al | ocs/ op

Y ou can see the result that operator allocsis the number of string. Because it new allocate new string
everytime when append the string. The fastest is bytes.Buffer method. In small concat we can use
operator method instead of buffer method, the performanceis not different.

35

	Microservices in Go
	Table of Contents
	
	Chapter 1. Performance
	1.1. Metrics
	1.2. Why Metrics are important
	1.3. Tools of the trade
	1.4. Never get slower
	1.5. net.Context
	1.6. InfluxDB
	1.6.1. Install InfluxDB

	1.7. Metrics in Go
	1.8. Using Grafana with InfluxDB
	1.8.1. Install Grafana

	1.9. Monitor
	1.10. Stacking Metrics
	1.11. Distributed Tracing with ZipKin
	1.11.1. ZipKin
	1.11.2. Setting up a ZipKin server
	1.11.3. Tracing a Go program.
	1.11.4. Tracing across services.

	1.12. Role of Caches, Queues and Databases
	1.12.1. Overview of why they are important
	1.12.2. Delay everything Queues

	1.13. Go Profiling
	1.14. Load tests
	1.14.1. Boom
	1.14.2. Vegeta
	1.14.3. Load test with Jenkins and jMeter Report

	1.15. General coding tips
	1.15.1. Garbage collection pointers
	1.15.1.1. Mutex
	1.15.1.2. Channel
	1.15.1.3. Benchmark

	1.15.2. Concatenation string performance
	1.15.2.1. Use the concatenate operator
	1.15.2.2. Use strings.Join
	1.15.2.3. Use bytes.Buffer
	1.15.2.4. Performance

